首页> 外文OA文献 >Refined Multiscale Fuzzy Entropy based on Standard Deviation for Biomedical Signal Analysis
【2h】

Refined Multiscale Fuzzy Entropy based on Standard Deviation for Biomedical Signal Analysis

机译:基于标准差的精细多尺度模糊熵   生物医学信号分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multiscale entropy (MSE) has been a prevalent algorithm to quantify thecomplexity of fluctuations in the local mean value of biomedical time series.Recent developments in the field have tried to improve the MSE by reducing itsvariability in large scale factors. On the other hand, there has been recentinterest in using other statistical moments than the mean, i.e. variance, inthe coarse-graining step of the MSE. Building on these trends, here weintroduce the so-called refined composite multiscale fuzzy entropy based on thestandard deviation (RCMFE{\sigma}) to quantify the dynamical properties ofspread over multiple time scales. We demonstrate the dependency of theRCMFE{\sigma}, in comparison with other multiscale approaches, on severalstraightforward signal processing concepts using a set of synthetic signals. Wealso investigate the complementarity of using the standard deviation instead ofthe mean in the coarse-graining process using magnetoencephalograms inAlzheimer disease and publicly available electroencephalograms recorded fromfocal and non-focal areas in epilepsy. Our results indicate that RCMFE{\sigma}offers complementary information to that revealed by classical coarse-grainingapproaches and that it has superior performance to distinguish different typesof physiological activity.
机译:多尺度熵(MSE)是一种量化生物医学时间序列局部均值波动复杂度的流行算法。该领域的最新进展试图通过减小大规模因子的可变性来改善MSE。另一方面,最近有兴趣在MSE的粗粒度步骤中使用除均值即方差之外的其他统计矩。在这些趋势的基础上,在此我们引入基于标准偏差(RCMFE {\ sigma})的所谓精炼复合多尺度模糊熵,以量化跨多个时标的动态特性。与其他多尺度方法相比,我们证明了RCMFE {\ sigma}对使用一组合成信号的几种直接信号处理概念的依赖性。我们还研究了在阿尔茨海默病中使用脑磁图和从癫痫病灶和非病灶区域记录的公开可用的脑电图在粗粒化过程中使用标准偏差而不是平均值的互补性。我们的结果表明,RCMFE {\ sigma}提供了与经典的粗粒度方法所揭示的信息互补的信息,并且它在区分不同类型的生理活动方面具有优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号